Assembly Line

How BigQuery helps Leverege deliver business-critical enterprise IoT solutions at scale

📅 Date:

🔖 Topics: IIoT, Cloud Computing

🏢 Organizations: Google, Leverege

Leverege IoT Stack is deployed with Google Kubernetes Engine (GKE), a fully managed kubernetes service for managing collections of microservices. Leverege uses Google Cloud Pub/Sub, a fully managed service, as the primary means of message routing for data ingestion, and Google Firebase for real-time data and user interface hosting. For long-term data storage, historical querying and analysis, and real-time insights , Leverege relies on BigQuery.

BigQuery allows Leverege to record the full volume of historical data at a low storage cost, while only paying to access small segments of data on-demand using table partitioning. For each of these examples, historical analysis using BigQuery can help identify pain points and improve operational efficiencies. They can also do so with both public datasets and private datasets. This means an auto wholesaler can expose data for specific vehicles, but not the entire dataset (i.e., no API queries). Likewise, a boat engine manufacturer can make subsets of data available to different end users.

Read more at Google Cloud Blog