OPC Unified Architecture (OPC-UA)

Assembly Line

⭐ A Framework for Enhancing the Interoperability of Information across a Plant

πŸ“… Date:

✍️ Authors: Atsushi Sato, Toshio Ono, Tetsuo Takeuchi

πŸ”– Topics: Industrial Control System, Programmable Logic Controller, OPC Unified Architecture, Operational Technology, Industrial Communication

🏒 Organizations: Yokogawa, FDT Group


Since it is becoming increasingly difficult for a single vendor to meet diversifying user requirements by itself, interoperability among multi-vendor components and control systems such as distributed control systems (DCS) and programmable logic controllers (PLC), has been improved by adopting open industrial communication protocols. However, these protocols, and the information generated, stored, and transferred, are not fully compatible with each other. Accordingly, the open platform communications unified architecture (OPC UA) and related international standards are attracting attention from many vendors and users as a key to high interoperability. This paper introduces how OPC UA improves interoperability among plant components and systems and describes Yokogawa’s prospect.

This paper introduced the trend of FITS and OPC UA FX as standard technologies related to OPC UA. Conventionally, a plant operation system is built by stacking various specialized elements. The system is expected to be integrated vertically and horizontally by industrial-level interoperability standards including OPC UA. As a result, the functional hierarchy will become flat and diverse components and systems will cooperate with each other regardless of the kind of vendors and applications. Yokogawa focuses on the interoperability in the cooperative domain, which was discussed in this paper, and is actively participating in standardization of FITS, OPC UA FX, and IEC/IEEE 60802.

Read more at Yokogawa Technical Report

Best practices in IIoT-based predictive maintenance

πŸ“… Date:

✍️ Author: Glenn Shulz

πŸ”– Topics: Industrial Communication, IIoT, OPC Unified Architecture

🏒 Organizations: FDT Group, Yokogawa


A key component of the FDT 3.0 standard is the FDT Server built around a core server, which provides a center point for a wide range of client and server interactions. It includes an OPC UA server providing access to device type manager (DTM) data with authenticated OPC UA clients and a web server enabling the use of web user interfaces on remotely connected, browser-based clients and other mobile devices such as smart phones, tablets and PCs. The solution also supports the use of apps that improve workforce productivity and plant availability.

β€œThe latest industry trends center around advanced data analytics, digital twins and cloud computing. The FDT 3.0 standard supports these solutions by delivering network and device information to enable improved diagnostics and predictive analytics. The technology provides a tool to not only monitor and predict asset health, but also remotely configure and manage assets for the highest level of reliability.”

Read more at Plant Engineering

OPC-UA: the Universal Language of Industry 4.0

πŸ“… Date:

✍️ Author: A Cartwright

πŸ”– Topics: OPC Unified Architecture, IIoT

🏒 Organizations: OPC Foundation, Ai Build


Forgive the obscene title of this article, for implying OPC-UA is nothing but a simple communication protocol is a great injustice. Indeed, OPC-UA encompasses this, but also so much more. It is a living, breathing, specification: one that outlines an information-centric architecture that is interwoven with security systems-systems which permeate a definitive rule-set for device modelling and communication.

At its essence, OPC-UA is a platform-independent, machine-to-machine communications architecture that focuses on providing an object-oriented approach to modelling data.

Read more at Ai Build TechBlog