Data Lakehouse

Assembly Line

How Corning Built End-to-end ML on Databricks Lakehouse Platform

📅 Date:

✍️ Author: Denis Kamotsky

🔖 Topics: MLOps, Quality Assurance, Data Lakehouse

🏢 Organizations: Corning, Databricks, AWS


Specifically for quality inspection, we take high-resolution images to look for irregularities in the cells, which can be predictive of leaks and defective parts. The challenge, however, is the prevalence of false positives due to the debris in the manufacturing environment showing up in pictures.

To address this, we manually brush and blow the filters before imaging. We discovered that by notifying operators of which specific parts to clean, we could significantly reduce the total time required for the process, and machine learning came in handy. We used ML to predict whether a filter is clean or dirty based on low-resolution images taken while the operator is setting up the filter inside the imaging device. Based on the prediction, the operator would get the signal to clean the part or not, thus reducing false positives on the final high-res images, helping us move faster through the production process and providing high-quality filters.

Read more at Databricks Blog