Inventory Optimization

Assembly Line

How Walmart Uses Apache Kafka for Real-Time Replenishment at Scale

Date:

Topics: Inventory Optimization, Demand Planning

Organizations: Walmart, Confluent

Real-time inventory planning has become a must for Walmart in the face of rapidly changing buyer behaviors and expectations. But real-time inventory is only half of the equation. The other half is real-time replenishment, which at a high level, we define as the way we can fulfill the inventory demand at every physical node in the supply chain network. As soon as inventory gets below a certain threshold, and based on many other supply chain parameters like sales forecast, safety stock, current availability of the item at node and its parents, we need to automatically replenish that item in a way that optimizes resources and increases customer satisfaction.

On any given day, Walmart’s real-time replenishment system processes more than tens of billions of messages from close to 100 million SKUs in less than three hours. We leverage an array of processors to generate an order plan for the entire network of Walmart stores with great accuracy and at high throughputs of 85GB messages/min. While doing so, it also ensures there is no data loss through event tracking and necessary replays and retries.

Read more at Confluent Blog