Utility

Assembly Line

Unveiling Databricks power in analyzing electrical grid assets using computer vision

📅 Date:

🔖 Topics: Machine Vision, MLOps

🏭 Vertical: Utility

🏢 Organizations: Databricks


Data is ingested from an EPRI dataset consisting of images of distribution assets along with labels for each object. These are ingested into Delta tables and transformed through the medallion architecture in order to produce a dataset that is ready for model training.

After data loading has been completed, the training can begin. In the age of GenAI, there is a scarcity of large GPU’s leaving only the smaller ones that can significantly impact training and experimentation times. In order to combat this, Databricks allows you to run distributed GPU training using features like PytorchDistributor. This accelerator takes advantage of this to utilize a cluster of commodity GPU’s to train our model which brings the training time down almost linearly.

Read more at Databricks Blog

How the Water Industry Is Transforming Submersible Pump Maintenance With AI

📅 Date:

✍️ Author: Jordy Maurits

🔖 Topics: Electrical Signature Analysis, Predictive Maintenance

🏭 Vertical: Utility

🏢 Organizations: Samotics


A technology called electrical signature analysis (ESA) makes reliable, remote monitoring of submerged pumps possible. ESA measures the current and voltage being supplied to the motor driving the pump. Because it captures the electrical signals, ESA sensors are current and voltage probes that are installed in the motor control cabinet. This bypasses the need to install sensors on, or even near, submerged pumps.

One solution utility operators are increasingly deploying to improve the energy efficiency of pumps are variable frequency drives (VFDs). VFDs are a type of motor controller that drive an electric motor by varying the supply frequency. By matching fluctuating load and demand requirements, organizations can operate pumps more efficiently, saving energy and extending their lifetime.

Read more at Pumps and Systems

♻️ Carbon Capture Is Hard. This Plant Shows Why.

📅 Date:

✍️ Author: Eric Niiler

🔖 Topics: Sustainability, Carbon Capture

🏭 Vertical: Utility

🏢 Organizations: SaskPower


Only one commercial power plant in North America is currently operating with carbon capture. Its experience hasn’t been as smooth—or climate-friendly—as proponents of the rules might hope. That plant, the Boundary Dam Power Station Unit 3 in Canada’s Saskatchewan province, turns locally mined coal into enough electricity for 100,000 homes.

The unit is designed to operate until 2044, but Boundary Dam’s owner, SaskPower, says the benefits of operating a coal-fired power unit using carbon-capture technology are becoming less apparent. “Utility operators in the United States will be in the same boat as we are,” said Rupen Pandya, president and chief executive of SaskPower.

Mr. Duffy said retrofitting an existing commercial-scale 300-megawatt natural-gas plant with carbon capture would cost $372 million, while retrofitting a similar-size coal plant would cost $600 million, based on recent estimates from the Energy Department. For new plants the cost would be about 10% less, he said.

The only commercial-scale power plant in the U.S. using carbon capture—the Petra Nova coal-fired plant in Texas—closed its $1 billion carbon-capture unit in 2020 after three years.

Read more at Wall Street Journal

☀️ Utility-scale solar installation goes automated

📅 Date:

✍️ Author: Ryan Kennedy

🔖 Topics: Industrial Robot

🏭 Vertical: Utility

🏢 Organizations: Terabase, Intersect Power, Signal Energy, NEXtracker, First Solar


Terabase announced it is launching an automated utility-scale solar installation system, dubbed Terafab. The company describes the service as an automated “field factory” that can double installation productivity. The installation system makes use of digital twins, logistics software, an on-site digital command center, a field-deployed automated assembly line, and installation rovers that can operate 24/7.

“We successfully field-tested Terafab last year, building 10 MW of a 400 MW site in Texas. Today’s launch is the next step forward to rapid commercial scale-up,” said Matt Campbell, chief executive officer and co-founder of Terabase. Terabase has partnered with developer Intersect Power, engineering, procurement and construction firm Signal Energy, tracking hardware provider NEXtracker, and solar panel manufacturer First Solar to develop the Terafab facility. Terafab is pegged for commercial deployment starting in Q3 2023.

Read more at PV Magazine