Additive Manufacturing

Assembly Line

Robot 3D Printing Makes Giant Industrial Mixer Blade

The Factory of the Future: Markforged and Guhring

Using artificial intelligence to control digital manufacturing

Date:

Topics: Additive Manufacturing, Computer Vision, AI

Organizations: MIT

MIT researchers have now used artificial intelligence to streamline this procedure. They developed a machine-learning system that uses computer vision to watch the manufacturing process and then correct errors in how it handles the material in real-time. They used simulations to teach a neural network how to adjust printing parameters to minimize error, and then applied that controller to a real 3D printer. Their system printed objects more accurately than all the other 3D printing controllers they compared it to.

The work avoids the prohibitively expensive process of printing thousands or millions of real objects to train the neural network. And it could enable engineers to more easily incorporate novel materials into their prints, which could help them develop objects with special electrical or chemical properties. It could also help technicians make adjustments to the printing process on-the-fly if material or environmental conditions change unexpectedly.

Read more at MIT News

From Boeing Starliner to Goodyear tire, 3-D printing is becoming manufacturing reality

Date:

Topics: Additive Manufacturing, 3D Printing

Organizations: Boeing, Humtown Products, Goodyear

By 2030, Goodyear aims to bring maintenance-free and airless tires to market, and 3-D printing is part of that effort for the Akron-based tire-making leader founded in 1898 and named after innovator Charles Goodyear. Currently, about 2% of its production is through additive manufacturing and more integration into the mix is in sight.

Humtown Products, a 63-year-old, family-owned foundry near Youngstown, Ohio, adopted 3-D printing in 2014 as an efficient way to make industrial cores and molds. Today, its additive manufacturing division accounts for 55% of overall revenue and is growing by 50% annually. Pivoting to 3-D printing was the company’s “Kodak moment,” said owner and president Mark Lamoncha. “If you are not in the next space, you are out of business,” Lamoncha said. “This industry is at a tipping point to commercialization and in many disciplines it is the equivalent of driving a race car,” he said.

“For industry, it’s most definitely a competitive advantage because you can design in ways that you can’t with traditional production,” said Melissa Orme, has been vice president of additive manufacturing since 2019, a role that cuts across Boeing’s three business units making commercial airplanes, satellites and defense systems. She works with a team of 100 engineers, researchers and other specialists in advancing the technology’s development. Orme cited advantages in reduced lead times for production by a factor of ten, streamlined design into one large piece for assembly, and increased durability.

Read more at CNBC

Nano Dimension continues expansion with 12.12% stake in Stratasys

Date:

Topics: Funding Event, Additive Manufacturing

Organizations: Nano Dimension, Stratasys

Investment in additive manufacturing continues as Nano Dimension has acquired a 12.12% stake in fellow 3D printer manufacturer Stratasys.

The strategic investment was certainly an unexpected one as Stratasys is one of the most seasoned veterans in industrial 3D printing. The companies may both be based in Israel, but their market segments couldn’t be more different: Nano Dimension specializes in Additively Manufactured Electronics (AME) while Stratasys operates almost exclusively in the polymer space with proprietary technologies like FDM and PolyJet.

Read more at 3D Printing Industry

Velo3D Gives Us a Backstage Tour of its New Facilities in Germany

3D Printed Injection Mold Tooling for Prototyping

Right to re-print: What role could 3D printing have in right to repair?

Date:

Author: Laura Griffiths

Topics: Additive Manufacturing, 3D Printing, Reshoring

Where the volumes are right or a redesign beneficial, the case for AM can be made but for many parts, traditional methods of manufacture are still the way to go. Reeves recalls a visit to the warehouse of one of Europe’s largest white goods spare parts suppliers almost a decade ago. An analysis of the millions of SKUs on-hand was conducted but Reeves concluded “you could literally count on one hand the ones that were viable 3D prints.”

“The ‘right to repair’ legislation is likely to cause logistical headaches for manufacturers globally who face having to stock hundreds of thousands of spare parts,” Dickin said. “However, the law could also finally move the dial in reversing the “throwaway society” trend of the last 60 years by creating goods that last longer - producing savings for both the consumer and environment.

Read more at TCT Magazine

3D printing hits the spot: How PepsiCo is using AM to produce drink bottle tooling

Date:

Topics: Additive Manufacturing

Vertical: Beverage

Organizations: PepsiCo

Among those tools and capabilities is PepsiCo’s patented Modular Mold Set, which is compatible with most standard blow moulders and comprises an aluminium shell, dental stone, and 3D printed inserts for various bottle designs from 100ml to 3L. “The Modular Mold Set is a means for us to be able to very rapidly and quickly generate a customised mould that we can then utilise in our lab-scale or Pilot Plant scale stretch blow moulding equipment,” Rodriguez told TCT.

Previously, to get functional mould samples, PepsiCo would contract an external service provider who would leverage a subtractive manufacturing technique – CNC or EDM, depending on the complexity – and return the tool within two-to-four weeks at a typical cost of up to 10,000 USD.

Read more at TCT Magazine

How Is 3D Printing Different From Other Manufacturing Techniques?

Date:

Topics: Additive Manufacturing

Organizations: Boston Micro Fabrication

Ultimately, the difference between 3D printing and other manufacturing methods is about how 3D printing builds parts in layers, and how 3D printing provides greater design freedom. From thickness and topology optimization to lattice formation, design for manufacturing (DFM) is different with 3D printing. This form of additive manufacturing also enables the design of single-piece parts instead of assemblies that require multiple components and fasteners.

Read more at BMF Blog

Linex Manufacturing overcomes inspection challenges

BMW Creates Fully Automated Production Lines for 3D Printed Car Parts

Date:

Topics: Additive Manufacturing, Laser Powder Bed Fusion

Vertical: Automotive

Organizations: BMW

By utilizing systems made up of laser powder bed fusion (LPBF) platforms, combined with AI and robotics, that it has developed, the IDAM consortium can print 50,000 series parts a year, as well as 10,000 new and individual parts. Opened in 2020, BMW’s campus at Oberschleißheim has 50 3D printers for both metal and plastics. Aside from investing in a variety of 3D printing startups, including Desktop Metal and Xometry, the company also employs HP MultiJet Fusion (MJF) and EOS machines, among other brands.

Read more at 3D Print

New Industrial Robot at Cornell can 3D Print Large-Scale Structures for the Construction Industry

Date:

Author: Laura Thomson

Topics: Additive Manufacturing

Vertical: Construction

Organizations: Cornell

A new 6,000-pound industrial robot at Cornell University can 3D print the kind of large-scale structures that could transform the construction industry, making it more efficient and sustainable by eliminating the waste of traditional material manufacturing.

Read more at AZO Materials

When to use 3D printing for mass production

Date:

Author: Izzy De La Guardia

Topics: Additive Manufacturing

Organizations: Fast Radius

You should consider using 3D printing for mass production if: You need to produce customized goods, You need to start or shift production quickly, You need to meet variable demand, You’re planning a low-volume production run, You have a complex part that would be otherwise unmakeable.

Read more at TCT Magazine

The Relevance of Cost Per Part to Scale the Additive Manufacturing Industry

Date:

Topics: Additive Manufacturing

Today, the cost of 3D printing parts is still too high to be truly viable for many applications. To give an idea, the price of 3D printing is still between 10 to 100 times more expensive than injection moulding. It is therefore vital that all process efficiency losses associated with industrial 3D printing be minimized. In doing so, costs will not increase exponentially with expanding production, which will pave the way for AM factories to scale their operations while maintaining competitive price levels. A lower cost per part will also create pathways for new businesses and industries to invest in and adopt AM.

Read more at AM-Flow Articles

How IGESTEK Produces 40% Lighter Automotive Parts

3Din30: What's Fueling Launcher's Race to Space?

Ford rolls out autonomous robot-operated 3D printers in vehicle production

Date:

Author: Paul Hanaphy

Topics: Robotic Arm, 3D Printing, Additive Manufacturing

Vertical: Automotive

Organizations: Ford, KUKA, Carbon

Leveraging an in-house-developed interface, Ford has managed to get the KUKA-built bot to ‘speak the same language’ as its other systems, and operate them without human interaction. So far, the firm’s patent-pending approach has been deployed to 3D print custom parts for the Mustang Shelby GT500 sports car, but it could yet yield efficiency savings across its production workflow.

“This new process has the ability to change the way we use robotics in our manufacturing facilities,” said Jason Ryska, Ford’s Director of Global Manufacturing Technology Development. “Not only does it enable Ford to scale its 3D printer operations, it extends into other aspects of our manufacturing processes – this technology will allow us to simplify equipment and be even more flexible on the assembly line.”

At present, the company is utilizing its setup to make low-volume, custom parts such as a brake line bracket for the Performance Package-equipped version of its Mustang Shelby GT500. Moving forwards though, Ford believes its program could be applied to make other robots in its production line more efficient as well, and it has filed several patents, not just on its interface, but the positioning of its KUKA bot.

Read more at 3D Printing Industry

How 3D printing improves sustainability across the supply chain

Date:

Topics: Sustainability, Additive Manufacturing

Organizations: Replique

After analyzing several studies about energy efficiency of 3D printing, the answer is not as simple. Due to very individual use cases (machine, product and process characteristics), comparability of traditional methods and 3D printing is not always generally possible. While compared with subtractive methods, 3D printing can be more energy efficient (especially due to lesser material consumption). The energy consumption of 3D printing compared to injection molding is generally considered to be higher due to a way longer production time per part (less than a minute per part for injection molding, several hours for 3D printing). However, other factors such as the energy consumption for producing the mold, the production volume and material efficiency have to be taken into account. When looking into lower volumes, it becomes a fact that additive manufacturing is a more sustainable production method, regarding energy efficiency.

Read more at Replique Blog

Additive Manufacturing Poised to Make a Value Impact on Oil & Gas Supply Chain

Date:

Topics: Additive Manufacturing

Vertical: Petroleum and Coal

Organizations: Velo3D

An end-to-end metal AM system allows OEMs to quickly manufacture mission-critical parts for O&G operators without extensive redesigns. Such a fully integrated solution consists of print preparation software that applies a generalized set of recipes based on the design’s native CAD file, a printer that executes the print file, and quality assurance software that ensures the health of the tool and monitors the build, layer-by-layer.

Additionally, the American Petroleum Institute has now published API20S, the first-ever O&G-industry sanctioned specification for metal AM. This spells out processes, testing, documentation and traceability, among other requirements, for manufacturers of metal AM components being used in O&G facilities of all types.

Read more at Industrial Distribution

Riven Ramps Up Accurate Part Production with 3D Reality Intelligence

Date:

Author: Heather MacKenzie

Topics: Additive Manufacturing, Simulation

Organizations: Riven, GrabCAD, Stratasys

Riven is a cloud software company specializing in 3D reality intelligence that accelerates product introduction of high-accuracy, end-use additive manufactured parts. Riven’s software, using 3D reality data and proprietary algorithms, allows engineering and manufacturing teams to cut iterations and time to good parts while improving the customer experience.

Now, Riven has gone further and corrects these deviations by introducing Warp-Adapted-Models (WAM); Riven’s WAM corrects systematic warp, scaling and offset from all causes in minutes from a first printed part. Additive manufactured parts using Riven WAM are up to 10X more accurate than those printed with CAD. WAM is also scalable from singular high-value parts to series production. This improved accuracy helps solve the customer pain and problems from out-of-spec parts and enables exciting new end-use product applications for AM.

Read more at GrabCAD Blog

3D Printing Mock-Ups to Solve Problems with Equipment Placement in Factories

Date:

Author: Agnieszka Kileńska

Topics: Additive Manufacturing

Organizations: Zortrax

Alfonso Buonora is a mechanical engineer with 15 years of experience in working for ABLAB3D, a Design and Consultancy studio. He cooperates with various industries helping them to devise the most efficient layout of production lines within their factories. To do so, he designs and constructs mock-ups of whole industrial plants as well as individual machines that compose them. For both prototyping and manufacturing purposes ABLAB3D takes advantage of Zortrax M200. Here are the reasons for using 3D printing in Mechanical Engineering and the step-by-step process of developing a mock-up for food industry, commissioned to Alfonso by an Italian producer of canned goods.

Read more at Zortrax Blog

U.S. Military To 3D Print Its Way Out Of Supply Chain Woes

Date:

Author: Carolyn Schwaar

Topics: Additive Manufacturing

Vertical: Defense

Additive manufacturing enables the military to produce new products quickly and cost-effectively, on-demand and at the point of need, either at base, at sea, or on the frontlines. It bolsters the lifespan of legacy systems and vehicles that might otherwise be retired.

Read more at Forbes

Radford uses 3D printing to customize automotive manufacturing

3D Printing in manufacturing is going supersonic

3D Printing Drives Growth In On-Demand Manufacturing

Date:

Author: Carolyn Schwaar

Topics: Additive Manufacturing, Cloud Manufacturing

Organizations: Fast Radius, Fathom

This new breed of on-demand digital manufacturing company is highly invested in software and digitally driven manufacturing technologies, such as industrial 3D printing. They not only promise faster and more efficient part manufacturing locally, but digital solutions that enable cost-saving product innovations and accelerated time to market for nearly any type of product.

The company’s newest microfactory on Chicago’s Goose Island features industrial 3D printers from Carbon and HP along side digitally integrated CNC machines, as part of Fast Radius’ Cloud Manufacturing Platform. The microfactory will produce component parts for companies across industries including electric vehicles, medical and healthcare devices, and consumer goods. The World Economic Forum named Fast Radius one of nine best factories in the world implementing “technologies of the Fourth Industrial Revolution” or Industry 4.0.

Read more at Forbes

Ocado showcases 3D printing innovation

Date:

Author: Cliff Saran

Topics: Additive Manufacturing, Warehouse Automation

Organizations: Ocado, HP

Ocado has unveiled a new approach to building the robots in its fulfilment centres, which it hopes will dramatically improve efficiency and reduce operating costs. The company has developed a 600 Series bot, which it said can be built cheaper and is lighter than the current 500 Series bot. According to Steiner, the 600 Series grocery fulfilment bot “changes everything”. Ocado designed the 600 Series using topology optimisation, similar to the technique used in the aerospace sector to make aircraft parts strong but light. It then used additive manufacturing, in partnership with HP, to make 3D prints of the parts required to build the 600 Series.

Read more at Computer Weekly

Generative Design for Milling Lightweights EV Motorbike Part

Date:

Topics: Generative Design, Additive Manufacturing

Organizations: Autodesk

Generative design software uses a set of user-input parameters and constraints to develop efficient part designs. These shapes are often organic forms no human would design on their own, and in its earliest years generative design was locked to additive manufacturing and production methods facilitated by additive manufacturing. Not long after Lightning and Autodesk developed their first iteration of the generatively designed motorcycle swing arm, Autodesk updated its solver to support milling and other conventional manufacturing methods. Design candidates generated for milling generally cannot reach the same level of optimization as their AM siblings, but they are much easier to manufacture while still reducing the weight of the part.

Read more at Modern Machine Shop

Additive Manufacturing: New Frontiers for Production and Validation

Date:

Author: Peter de Groot

Topics: Additive Manufacturing, Metrology

Organizations: Zygo

Additive manufacturing (AM) is a uniquely disruptive technology; 25-30 years ago, it changed the manufacturing paradigm by altering the way that manufacturers produced prototypes. Today, it is disrupting the way that manufacturers produce end-use parts and components, and is increasingly seen as a truly viable production technique. Now, the conversation among manufacturers is around the most judicious use of AM for production, its advantages, the sweet spot is in terms of production volumes, key opportunities, and barriers to entry. Many of these barriers relate to precision quality control of AM parts, which challenge traditional methods of surface metrology.

Read more at Industrial Distribution

New Micro-3D Printing Technique Could Benefit Pentagon

Date:

Author: Yasmin Tadjdeh

Topics: Additive Manufacturing

Vertical: Defense

Organizations: Boston Micro Fabrication

For many pieces of equipment, such as lenses or sensors, there is a trend to make them smaller and smaller, he said. But traditional manufacturing techniques that have historically been used to make the parts don’t scale well and have other limitations. To address this, the company developed a process it calls projection micro stereolithography, he said. The technique allows for the rapid photopolymerization of a layer of resin with ultraviolet light at micro-scale resolution, allowing the company to achieve ultra-high accuracy precision and resolution that cannot be achieved with other technologies, according to Kawola’s slides.

Todd Spurgeon, a project engineer at America Makes, said he sees several ways the technology could be leveraged for the Defense Department. For example, it could be employed for higher-end electronics, circuits, small unmanned aerial vehicles and microneedle arrays for fast-acting medicines.

Read more at National Defense Magazine

Merck Teams Up With Rival J&J to Help Produce Its Covid Vaccine

The New Space Race: How 3-D Printing Is Driving Current And Future Space Exploration

Date:

Author: Jonah Myerberg

Topics: additive manufacturing

Vertical: Aerospace

Organizations: Desktop Metal

The ability to print parts is also helping reduce the complexity of rockets. Dubbed by some as “the most complex flying machine ever built,” the Space Shuttle used a staggering 2.5 million parts. Using 3-D printing, manufacturers can consolidate many of the complex components into multifunction assemblies, which can make them easier, faster and less expensive to produce, as well as more reliable to operate.

As the cost and complexity of manufacturing rockets and rocket engines have decreased in recent years, a number of private space exploration companies have emerged. Among the newest players in the field, our customer Privateer Space, co-founded by Steve Wozniak, is using 3-D printing to create small cube satellites that will monitor and remove debris from orbit.

Read more at Forbes

Benefits of 3D Printed End-Use Parts in a Yacht

Date:

Topics: additive manufacturing

Vertical: Ship and Boat

Organizations: INTAMSYS, Sea3D

3D printing allows the company to make any number of different parts to fit and match exactly with the various spaces onboard a yacht. The CAD model can be created according to the space allowed and fits the needed requirements. With the advancements in filaments and precise high-quality printers like the FUNMAT HT, Nick and Adam are able to have a high control on cost, produce parts faster than traditional manufacturing, and use materials that are better suited to the intended function than in conventional methods. The FUNMAT HT is an open material system that doesn’t come at an extra cost, thus allowing them to test many types of filaments.

Read more at JEC Group

Hexagon industrialises high quality additive manufacturing with open ecosystem strategy

Date:

Topics: additive manufacturing

Organizations: Hexagon, Stratasys

Hexagon’s Manufacturing Intelligence division has revealed its plans to build the industry’s most flexible and open additive manufacturing (AM) ecosystem to help overcome complexities in 3D printing processes and support customers in effectively building their product development and manufacturing workflows.

“Just as large manufacturers drove the provision of open factory automation, it’s important we vendors now break down barriers to new manufacturing technologies that offer more flexibility and efficiency. Instead, open data standards should be seen as a growth enabler.”

Read more at JEC Group

Making the Call in Mass Production: 3D Printing or Traditional Manufacturing?

Date:

Topics: Additive manufacturing, 3D printing

Organizations: Shapeways

When focusing on plastic components and products, there are traditionally few manufacturing methods available, the oldest and most common being injection molding. While injection molding has dominated the manufacturing landscape for decades, newer techniques like 3D printing, have begun to gain traction by offering an alternative, as well as advantages over traditional methods; for example, a company may go straight to injection molding to manufacture plastic products in a high volume of 10,000 parts or more–or they may choose 3D printing for greater flexibility in making designs, multiple iterations, and the ability to make complex geometries not possible before.

Read more at Shapeways Blog

Machine-learning system accelerates discovery of new materials for 3D printing

Date:

Author: Adam Zewe

Topics: materials science, 3d printing, additive manufacturing

Organizations: MIT

The growing popularity of 3D printing for manufacturing all sorts of items, from customized medical devices to affordable homes, has created more demand for new 3D printing materials designed for very specific uses.

A material developer selects a few ingredients, inputs details on their chemical compositions into the algorithm, and defines the mechanical properties the new material should have. Then the algorithm increases and decreases the amounts of those components (like turning knobs on an amplifier) and checks how each formula affects the material’s properties, before arriving at the ideal combination.

The researchers have created a free, open-source materials optimization platform called AutoOED that incorporates the same optimization algorithm. AutoOED is a full software package that also allows researchers to conduct their own optimization.

Read more at Phys.org

U.S. Army’s New Expeditionary 3D Concrete Printer Can Go Anywhere, Build Anything

Date:

Author: David Hambling

Topics: additive manufacturing, 3d printing

Vertical: Defense, Construction

Organizations: US Army, Caterpillar

The U.S. Army Corps of Engineers’ Automated Construction of Expeditionary Structures (ACES) program is a game changer for construction in remote areas. The project will supply rugged 3D concrete printers that can go anywhere and print (almost) anything. The project started several years ago when concrete printers were very much in their infancy, but even then it was obvious that commercial products would not fit the Army’s needs.

ACES has produced multiple printers working with different industry partners. For example, ACES Lite was made in partnership with Caterpillar under a Cooperative Research and Development Agreement. It packs into a standard 20-foot shipping container and can be set-up or taken down in 45 minutes, has built-in jacks for quick leveling and can be calibrated in a matter of seconds, making it more straightforward than other devices. Overall the printer resembles a gantry crane, with a concrete pump, hose and a robotic nozzle which lays down precise layers.

The new technology is not magic, as 3D-printed construction is still construction. It does not do everything. A printed building still requires a roof and finishing touches like any other construction work. In areas with good logistics where equipment, labor and materials are all plentiful, there may be little advantage to the ACES approach. But in expeditionary environments, where all these things are likely to be in short supply, ACES could make a real difference.

Read more at Forbes

Additive for Aerospace: Welcome to the New Frontier

Date:

Author: Kip Hanson

Topics: additive manufacturing, nondestructive test

Vertical: Aerospace, Defense

Organizations: Aerojet Rocketdyne, NASA, Northrop Grumman

Gao, a tech fellow and AM technical lead at Aerojet Rocketdyne, is particularly interested in the 3D printing of heat-resistant superalloys (HRSAs) and a special group of elements known as refractory metals. The first of these enjoy broad use in gas turbines and rocket engines, but it’s the latter that offers the greatest potential for changing the speed and manner in which humans propel aircraft, spacecraft, and weaponry from Point A to Point B.

“When you print these materials, they typically become both stronger and harder than their wrought or forged equivalents,” he said. “The laser promotes the creation of a supersaturated solid solution with fantastic properties, ones that cannot be achieved otherwise. When you combine this with AM’s ability to generate shapes that were previously impossible to manufacture, it presents some very exciting possibilities for the aerospace industry.”

Eric Barnes, a fellow of advanced and additive manufacturing at Northrop Grumman, says “Northrop Grumman and its customers are now in a position to more readily adopt additive manufacturing and prepare to enter that plateau of productivity because we have spent the past few years collecting the required data and generating the statistical information needed to ensure long term use of additive manufacturing in an aeronautical environment… In the future, you may be able to eliminate NDT completely. Comprehensive build data will also serve to reduce qualification timelines, and if you’re able to understand all that’s going on inside the build chamber in real-time, machine learning and AI systems might be able to adjust process parameters such that you never have a bad part.”

Read more at SME Media

Improving the Manufacturing Process Through 3D Printing

Industrializing Additive Manufacturing by AI-based Quality Assurance

Date:

Author: Axel Reitinger

Topics: additive manufacturing, quality assurance

Organizations: Siemens

At Siemens we are aiming to significantly improve quality assurance in Additive Manufacturing (AM) with industrial artificial intelligence and machine-learning to accelerate the time from prototype to industrialization as well as the efficiency in large-scale serial production.

Data of all print jobs are collected in a virtual private cloud (encrypted and secured by two-factor authentication), which facilitates the analysis and comparison across multiple print jobs and factory locations.

A profile of the severity scores of the final prototype can be used to define upper control limits for the serial production, which are then the basis for an automatic monitoring of the printing quality in the industrial phase. This could include, for example, the automatic creation of non-conformance reports (NCR).

The application calculates a severity score per printed part on the layer and additionally a severity score for the whole build plate. The severity score per part is calculated on the area of the bounding box of every single part, which helps to focus on those issues in the powder bed that can negatively impact the part’s quality. It allows a detailed monitoring of every part during the print process and is used by technical experts to evaluate if further Non-Destructive-Evaluation (NDE) of the finished part is required.

Read more at Siemens Ingenuity

In situ infrared temperature sensing for real-time defect detection in additive manufacturing

Date:

Authors: Rifat-E-Nur Hossain, Jerald Lewis, Arden L. Moore

Topics: additive manufacturing, defect detection

Organizations: Louisiana Tech University

Melt pool temperature is a critical parameter for the majority of additive manufacturing processes. Monitoring of the melt pool temperature can facilitate the real-time detection of various printing defects such as voids, over-extrusion, filament breakage, clogged nozzle, etc. that occur either naturally or as the result of malicious hacking activity. This study uses an in situ, multi-sensor approach for monitoring melt pool temperature in which non-contact infrared temperature sensors with customized field of view move along with the extruder of a fused deposition modeling-based printer and sense melt pool temperature from a very short working distance regardless of its X-Y translational movements. A statistical method for defect detection is developed and utilized to identify temperature deviations caused by intentionally implemented defects.

Read more at ScienceDirect

The Genius of 3D Printed Rockets

Robotic 3D manufacturing providing greater flexibility

Date:

Author: Tanya Anandan

Topics: additive manufacturing, robotics

Organizations: Lincoln Electric, MX3D, ABB

Robots are extending their reach. These multiaxis articulators are taking 3D manufacturing and fabrication to new heights, new part designs, greater complexity and production efficiencies. Integrated with systems to extend their reach even further, their flexibility is unmatched. Robots are virtually defying gravity in additive manufacturing (AM), tackle complex geometries in cutting, and collaborate with humans to improve efficiencies in composite layup. This is the future of 3D.

3D printing is already a multibillion-dollar industry, with much of the activity focused on building prototypes or small parts made from plastics and polymers. For metal parts, one additive process garnering lots of attention is robotic wire arc additive manufacturing (WAAM).

Read more at Plant Engineering

The Challenge with AM Process Substitution

Date:

Author: @PSUMakerProf

Topics: additive manufacturing, 3D printing

Organizations: Pennsylvania State University

I have lost track of how many times I have stressed the economic (and technical) challenges companies face when attempting process substitutions with additive manufacturing (AM), or what I often refer to as “replicating” a part with AM. In short, everyone thinks a metal AM part is going to be cheaper than the machined, cast or forged version of the part (or as strong as the injection-molded part for those working in plastics) based on the hype, only to find that it is not. The “sticker shock” and disappointment that ensue often dampens the enthusiasm for AM and can undermine future AM investments, creating an uphill battle for AM.

Read more at Modern Machine Shop

The Journey of Additive Manufacturing and Artificial Intelligence

3D Search Unlocks Part Database Potential

Date:

Author: @David__Lyell

Topics: 3D printing, additive manufacturing

Organizations: Physna

A variety of digital formats can be leveraged as input, anything from CAD files to photographs, with the system’s algorithms that the Physna team developed creating a “digital fingerprint” of the 3D object. This fingerprint describes the object and enables the user to search a database of parts using a 3D part as the search term.

Physna is capable of interpreting assemblies and the parts associated with the assembly. In the 3D viewer, the user is able to inspect the assembly and search for similar parts from the database.

For instance, if an engineer at has modeled a flange that features a 1-inch ID, a common search using language would be “1-inch flange”, but if the engineer uploaded the model to Physna, the fingerprint would include aspects of the flange like its bolt pattern, whether or not it incorporated a bearing and contours of the flange design. This may lead to discovery of previously designed parts or even compatible third party parts if the database is connected to other vendors.

Read more at Modern Machine Shop

How startups can hit it big by thinking small

Date:

Author: Benny Buller

Topics: 3D printing, additive manufacturing

Organizations: VELO3D

I estimated what the size of the market might be for seemingly impossible parts and calculated that the potential reward was worth the risk. Someone needed to undertake this quest. And even though it embarasses me now to think about how naive some of my original assumptions were, I decided that person should be me. So I launched Velo3D, aimed at using 3D printing to make the parts that innovative companies need to create the future.

We realized that we didn’t have to solve the entire problem. Instead, we could succeed with a much smaller focus by identifying the most valuable, specific problems to solve for customers and tackling those.

Suddenly our entire mindset changed. We were no longer looking for a solution to make any shape possible. We were looking for a way to create one specific type of turbopump. It sounds less exciting, I know. But it was the best thing we could have done.

Read more at Fast Company

BMW-led study highlights need for AI-based AM part identification

Date:

Author: Davide Sher

Topics: additive manufacturing, 3D printing

Vertical: Automotive

Organizations: BMW, AM Flow

With time-to-market in the automotive industry steadily decreasing, demand for prototyping components is higher than before and the vision of large-scale production, delivering just-in-time to assembly lines, is emerging. This is not only a question of increasing output quantity and production speed but also of economic viability. The process chain of current available AM technologies still includes a high amount of labor intensive work and process steps, which lead to a high proportion of personnel costs and decreased product throughput. Also, these operations lead to bottlenecks and downtimes in the overall process chain.

Read more at 3D Printing Media

Scientists Set to Use Social Media AI Technology to Optimize Parts for 3D Printing

Date:

Author: Kubi Sertoglu

Topics: 3D Printing, additive manufacturing, AI, genetic algorithm

Organizations: Department of Energy, Argonne National Laboratory

“My idea was that a material’s structure is no different than a 3D image,” he explains. ​“It makes sense that the 3D version of this neural network will do a good job of recognizing the structure’s properties — just like a neural network learns that an image is a cat or something else.”

To see if his idea would work, Messner designed a defined 3D geometry and used conventional physics-based simulations to create a set of two million data points. Each of the data points linked his geometry to ‘desired’ values of density and stiffness. Then, he fed the data points into a neural network and trained it to look for the desired properties.

Finally, Messner used a genetic algorithm – an iterative, optimization-based class of AI – together with the trained neural network to determine the structure that would result in the properties he sought. Impressively, his AI approach found the correct structure 2,760x faster than the conventional physics simulation.

Read more at 3D Printing Industry

Nissan Accelerates Assembly Line with 3D Printing Solution

Date:

Topics: 3D printing, additive manufacturing

Vertical: Automotive

Organizations: Nissan, BCN3D

Previously Nissan outsourced all of its prototypes and jigs to mechanical suppliers who used traditional manufacturing methods, such as CNC and drilling. Although the quality of the finished product was good, the lead times were long and inflexible and the costs were high. Even simple tools could cost in the region of 400€ for machining. By printing some of these parts in-house with 3D printers, Nissan has cut the time of designing, refining and producing parts from one week to just one day and slashed costs by 95%.

Eric Pallarés, chief technical officer at BCN3D, adds: “The automotive industry is probably the best example of scaling up a complex product with the demands of meeting highest quality standards. It’s fascinating to see how the assembly process of a car – where many individual parts are put together in an assembly line – relies on FFF printed parts at virtually every stage. Having assembled thousands of cars, Nissan has found that using BCN3D 3D printing technology to make jigs and fixtures for complex assembly operations delivers consistently high quality components at a reduced time and lower cost”.

Read more at Manufacturing and Engineering Magazine

How 3D Printing Impacts The Maritime Industry

Date:

Author: Doug Walker

Topics: 3D printing, additive manufacturing

Vertical: Ship and Boat

Organizations: Wilhelmsen, thyssenkrupp, Tru-Marine, Thermwood

3D printing has penetrated a range of sectors and industries to a point where it is being adopted by mainstream organizations in their manufacturing processes. However, one sector that has been left behind in this adoption is the maritime industry.

There are a stream of applications for 3D printing in the maritime industry, such as product innovation and customization, spare part manufacturing, on-demand manufacturing, and much more.

Read more at Fabbaloo

3D Printing Technologies in Aerospace and Defense Industries

Date:

Author: Dick Slansky

Topics: 3D printing, additive manufacturing

Vertical: Aerospace, Defense

Organizations: Boeing

Currently, AI is an integral part of the design process for AM in aerospace. In designing parts for aircraft, achieving the optimal weight-to-strength ratio is a primary objective, since reducing weight is an important factor in air-frame structures design. Today’s PLM solutions offer function-driven generative design using AI-based algorithms to capture the functional specifications and generate and validate conceptual shapes best suited for AM fabrication. Using this generative functional design method produces the optimal lightweight design within the functional specifications.

Read more at AutomationWorld

Circular Economy 3D Printing: Opportunities to Improve Sustainability in AM

Date:

Author: Hayley Everett

Topics: additive manufacturing, 3D printing, sustainability

Vertical: Machinery, Automotive

Organizations: Ford, Renault, Reflow, Recreus, HP, Materiom

Within the 3D printing sector alone, there are various initiatives currently underway to develop closed-loop manufacturing processes that reuse and repurpose waste materials. Within the automotive sector, Groupe Renault is creating a facility entirely dedicated to sustainable automotive production through recycling and retrofitting vehicles using 3D printing, while Ford and HP have teamed up to recycle 3D printing waste into end-use automotive parts.

One notable project that is addressing circular economy 3D printing is BARBARA (Biopolymers with Advanced functionalities foR Building and Automotive parts processed through Additive Manufacturing), a Horizon 2020 project that brought together 11 partners from across Europe to produce bio-based materials from food waste suitable for 3D printing prototypes in the automotive and construction sectors.

Read more at 3D Printing Industry

How Materialise Research Makes Multi-Laser 3D Printers Accessible with Future-Proof Software

Date:

Author: Madeleine Fiello

Topics: additive manufacturing, 3D printing

Vertical: Machinery

Organizations: Materialise

A major goal for many in the 3D printing industry is boosting productivity to ultimately scale operations. Materialise’s software research team predicts that multi-laser machines will be key in enabling 3D printing factories to accomplish this goal.

In this blog, we’ll dive into this topic with Tom Craeghs, Research Manager within our Central Research & Technology department. Read on to discover the advantages and challenges of multi-laser machines, as well as how advancements in software will enable these printers and their associated productivity to become a reality.

Read more at Materialise Blog

Exploring Additive Manufacturing Opportunities: Optimizing Production with Hyundai Lifeboats

Date:

Author: Kristel Van den Bergh

Topics: additive manufacturing, 3D printing

Vertical: Ship and Boat

Organizations: Materialise, Hyundai

This project was the epitome of Explore. Just as myself, Director of Innovation at Materialise, and others from the Mindware team, had no experience or knowledge of producing lifeboats, the Hyundai team was unaware of the capabilities and limitations of 3D printing. So, the first step in this project was bringing our two worlds together to pinpoint a relevant business challenge for Hyundai Lifeboats that we believed could best be solved via additive manufacturing.

Easier said than done. We dove into an interactive workshop session in which we discovered each side’s perspectives, expectations, and blind spots. We first discussed how AM could increase the boat’s value — with enhanced speed, performance, functionality — but we were met with hesitancy from the Hyundai team.

Read more at Materialise Blog

How Additive Manufacturing Adoption Brings Business Gains

Date:

Author: Tim DeRosett

Topics: 3D printing, additive manufacturing

Vertical: Machinery

Organizations: Jabil

Analysis from Jabil’s 2021 3D Printing Technology Trends survey revealed that additive manufacturing is already enabling unique and better ways for manufacturers to serve their markets. In the last few years, highly regulated industries with precise and rigid standards for safety and quality, such as healthcare, aerospace, defense and automotive, have positioned themselves enthusiastically among those championing the strategic benefits of additive manufacturing.

Read more at Jabil

How Artificial Intelligence Can Automate 3D Printing Decision-Making

GE to advance competitiveness of wind energy with 3D printed turbine blades

Date:

Author: Hayley Everett

Topics: 3D printing, additive manufacturing

Vertical: Electrical Equipment

Organizations: General Electric, Boeing

The project will initially produce a full-size 3D printed blade tip for structural testing, in addition to three blade tips to be installed on a wind turbine, with the hope of reducing manufacturing cost and increasing supply chain flexibility for the components.

“We are excited to partner with the DoE Advanced Manufacturing Office, as well as with our world class partners to produce a highly innovative advanced manufacturing and additive process to completely revolutionize the state of the art of wind blade manufacturing,” said Matteo Bellucci, GE Renewable Energy’s Advanced Manufacturing Leader.

Read more at 3D Printing Industry

Guide to Selective Laser Sintering (SLS) 3D Printing

Date:

Topics: 3D printing, additive manufacturing

Vertical: Machinery

Organizations: Formlabs

Selective laser sintering (SLS) 3D printing is trusted by engineers and manufacturers across different industries for its ability to produce strong, functional parts.

In this extensive guide, we’ll cover the selective laser sintering process, the different systems and materials available on the market, the workflow for using SLS printers, the various applications, and when to consider using SLS 3D printing over other additive and traditional manufacturing methods.

Read more at Formlabs

Speeding the Adoption of Additive Manufacturing

Date:

Author: Ashley Eckhoff

Topics: 3D printing, additive manufacturing

Vertical: Machinery

Organizations: Siemens

Additive manufacturing (AM), or 3D printing offers a number of potential innovations in product design, while its flexible manufacturing capabilities can support a distributed manufacturing model - helping to unlock new business potential. However, when companies begin to consider all that is needed to make additive a reality— such as generative design, part consolidation, and topology optimization—it becomes clear that the traditional ways of designing and manufacturing parts are falling away.

Read more at Manufacturing.net

3D printing in metal resulted in fewer bacteria and greater food safety

Date:

Topics: additive manufacturing, 3d printing

Vertical: Food

Organizations: Danish Technological Institute, Marel

3D printing in metal was chosen as a solution and Marel quickly began to redesign the support element specifically for 3D printing, so that it took full advantage of the technology’s possibilities. The support element is in direct contact with food, so bacteria can accumulate in all cleaves, joints and openings, and these bacteria can be transferred directly to the meat. That’s why we were really excited about the possibility of 3D printing the support element in one piece, and the weight reduction was also a positive element, as the support element moves MANY times a second, says Matias Taul Hansen, Technical Designer at Marel

3D printing is a much cheaper solution than cutting out the item, and compared to laser cutting, 3D printing is also preferable, as we avoid joints where bacteria can accumulate. By 3D printing in titanium, we also achieve a lower-weight item that is cheaper to produce and that can work faster, says Kristian Rand Henriksen, consultant at the Danish Technological Institute.

Read more at Danish Technological Institute