Computer-aided Design (CAD)

Assembly Line

How to Design Furniture in Fusion 360: Everything You Need to Know

Date:

Author: Trent Still

Topics: computer-aided design

Vertical: Furniture

Organizations: Autodesk

Recently, we hosted an extensive, week-long workshop on designing furniture in Fusion 360. If you’ve been curious about how to take advantage of workflows that include parametric design and production automation — or even just want to learn the basics — read on because this article is for you. We’ll share each video in the series, along with a brief recap of what you’ll learn from watching. Let’s get started.

Read more at Fusion 360 Blog

Manufacturing Manakins for Medical Simulation and Training

Date:

Author: Rehana Begg

Topics: computer-aided design, digital twin

Vertical: Medical Equipment

Organizations: Simetri

Human patient simulators may mimic the human body with varying degrees of realism—or fidelity—and can be used in almost every aspect of healthcare education. The most effective medical training devices are those that have the ability to create accurate modeling of the underlying structures of the human body and replicating them digitally and physically, noted Alban. It is why Simetri’s anatomical models and medical training aides integrate electronic, mechanical and computational components and turns to materials science for innovations in soft and skeletal tissue.

The roadmap to digitization for Simetri, said Alban, started first on the mechanical side, when mechanical models started to go from sketches to using SolidWorks and 3D models, and then embedding sensors to capture data before writing the related software and then advancing the software development capability.

In another development, software can monitor when skin has been cut, and when and if the correct fascia (connective tissue encasing the muscle) has been cut. That data is transmitted digitally to the manakin, and the physiology model of that manakin is updated as a result of that new data and, therefore, displays new vital signs. “If you will have done it the right way, you will lose pulse at the foot, but if you do this procedure correctly, you will gain back pulse at the foot because you’re allowing circulation to flow through,” explained Alban.

Read more at Machine Design

How Data-driven Manufacturing Unlocks Speed and Transparency during Injection Molding Process

Date:

Topics: computer-aided design, injection moulding, digital manufacturing

Organizations: Protolabs

Many of the parts we manufacture have at least one measurement that’s mission critical. Maybe the parts won’t work in an assembly unless a planned hole is within spec. Typical CAD models provide an opportunity to include specific dimensions, but what if you could tell your manufacturer early-on that dimension X is the one that makes or breaks a part? That’s where Critical-to-Quality (CTQ) comes in.

The CTQ specifications that you include in your quote and CAD model help to guide us during manufacturing, saving another critical dimension: TIME. We can often tell you if it’s possible for us to make your part before the mold is cut.

CTQ is also an important element of our digital manufacturing processes because we use these specs to evaluate initial runs of your parts. Let’s say that your parts require sample qualification or part validation. CTQ becomes even more crucial at that point because the data that flows from those initial shots can predict the future tolerances for those critical dimensions, revealing the suitability of end-use parts for a given assembly.

Read more at Protolabs Blog