IT OT Convergence

Assembly Line

Securely sending industrial data to AWS IoT services using unidirectional gateways

📅 Date:

✍️ Author: Ryan Dsouza

🔖 Topics: IIoT, IT OT Convergence, Cybersecurity, OPC-UA, MQTT

🏢 Organizations: AWS


Unidirectional gateways are a combination of hardware and software. Unidirectional gateway hardware is physically able to send data in only one direction, while the gateway software replicates servers and emulates devices. Since the gateway is physically able to send data in only one direction, there is no possibility of IT-based or internet-based security events pivoting into the OT networks. The gateway’s replica servers and emulated devices simplify OT/IT integration.

A typical unidirectional gateway hardware implementation consists of a network appliance containing two separate circuit boards joined by a fiberoptic cable. The “TX,” or “transmit,” board contains a fiber-optic transmitter, and the “RX,” or “receive,” board contains a fiber-optic receiver. Unlike conventional fiber-optic communication components, which are transceivers, the TX appliance does not contain a receiver and the RX appliance does not contain a transmitter. Because there is no laser in the receiver, there is no physical way for the receiving circuit board to send any information back to the transmitting board. The appliance can be used to transmit information out of the control system network into an external network, or directly to the internet, without the risk of a cyber event or another signal returning into the control system.

Read more at AWS Blogs

Yokogawa and FPT Software Ink Global Partnership to Advance DX Solution Offerings

📅 Date:

🔖 Topics: Partnership, IT OT Convergence

🏢 Organizations: Yokogawa, FPT Software


Specifically, FPT Software will strengthen Yokogawa’s IT capabilities by providing support in the areas of application development, system maintenance, infrastructure deployment, infrastructure operation, and the offering of software as a service. Yokogawa will leverage its solid foundation of OT know-how and experience to support FPT Software in applying its technologies to the field, while continuously enhancing its own DX-related solutions and services. As a result, the customers of both companies will be able to experience a broader array of enhanced and differentiated DX services that make combined use of OT and IT.

Read more at Yokogawa News

OT-IT Integration: AWS and Siemens break down data silos by closing the machine-to-cloud gap

📅 Date:

🔖 Topics: IT OT Convergence, Cloud Computing

🏢 Organizations: AWS, Siemens


AWS announced that AWS IoT SiteWise Edge, on-premises software that makes it easy to collect, organize, process, and monitor equipment data, can now be deployed directly from the Siemens Industrial Edge Marketplace to help simplify, accelerate, and reduce the cost of sending industrial equipment data to the AWS cloud. This new offering aims to help bridge the chasm between OT and IT by allowing customers to start ingesting OT data from a variety of industrial protocols into the cloud faster using Siemens Industrial Edge Devices already connected to machines, removing layers of configuration and accelerating time to value.

Customers can now jumpstart industrial data ingestion from machine to edge (Level 1 and Level 2 OT networks) by deploying AWS IoT SiteWise Edge using existing Siemens Industrial Edge infrastructure and connectivity applications such as SIMATIC S7+ Connector, Modbus TCP Connector, and more. You can then securely aggregate and process data from a large number of machines and production lines (Level 3), as well as send it to the AWS cloud for use across a wide range of use cases. This empowers process engineers, maintenance technicians, and efficiency champions to derive business value from operational data that is organized and contextualized for use in local and cloud applications, unlocking use cases such as asset monitoring, predictive maintenance, quality inspection, and energy management.

Read more at AWS Industry Blog

The Blueprint for Industrial Transformation: Building a Strong Data Foundation with AWS IoT SiteWise

📅 Date:

✍️ Authors: Sophie Pagalday, Sharon Allpress, Jan Borch, David Castro

🔖 Topics: IIoT, OPC-UA, MQTT, Modbus, Cloud Computing, IT OT Convergence

🏢 Organizations: AWS, Volkswagen


AWS IoT SiteWise is a managed service that makes it easy to collect, organize, and analyze data from industrial equipment at scale, helping customers make better, data-driven decisions. Our customers such as Volkswagen Group, Coca-Cola İçecek, and Yara International have used AWS IoT SiteWise to build industrial data platforms that allow them to contextualize and analyze Operational Technology (OT) data generated across their plants, creating a global view of their operations and businesses. In addition, our AWS Partners such as Embassy of Things (EOT), Tata Consulting Services (TCS) Edge2Web, TensorIoT, and Radix Engineering have made AWS IoT SiteWise the foundation for purpose-built applications that enable use cases such as predictive maintenance and asset performance monitoring. Through these engagements with customers and partners, we have learned that the main obstacles in scaling digital transformation initiatives include project complexity, infrastructure costs, and time to value.

With newly added APIs, AWS IoT SiteWise now allows you to bulk import, export, and update industrial asset model metadata at scale from diverse systems such as data historians, other AWS accounts, or – in the case of AWS Independent Software Vendors (ISV) Partners – their own industrial data modeling tools.

To collect real-time data from equipment, AWS IoT SiteWise provides AWS IoT SiteWise Edge, software created by AWS and deployed on premises to make it easy to collect, organize, process, and monitor equipment at the edge. With SiteWise Edge, customers can securely connect to and read data from equipment using industrial protocols and standards such as OPC-UA. In collaboration with AWS Partner Domatica, we recently added support for an additional 10 industrial protocols including MQTT, Modbus, and SIMATIC S7, diversifying the type of data that can be ingested into AWS IoT SiteWise from equipment, machines, and legacy systems for processing at the edge or enriching your industrial data lake. By ingesting data to the cloud with sub-second latency, customers can use AWS IoT SiteWise to monitor hundreds of thousands of high-value assets across their industrial operations in near real time.

Read more at AWS Blog

Industrial Automation Software Management on AWS—Best Practices for Operational Excellence

📅 Date:

✍️ Authors: Srinivas Nidamarthi, Kevin Vo, Matt Lee, Nishant Saini

🔖 Topics: IT OT Convergence, Programmable Logic Controller

🏢 Organizations: AWS, Amazon, Copia Automation


Operational and maintenance tasks can become complex, and change control becomes challenging as the number of PLCs and robotics or other automation systems increases. Problems arise when the right version and right configuration of the code is not found. While code and configuration management is a standard DevOps practice for software development, these practices are not as common in the world of industrial automation, primarily due to lack of good tooling. These challenges can now be solved through systematic, secure, and easily accessible solutions in the AWS cloud.

One such solution is Copia Automation’s Git-based source control (Git is an open-source DevOps tool for source code management). Copia Automation brings the power of a modern source control system (specifically, Git) to industrial automation. The Copia solution is deployed in Amazon’s own AWS account. In this type of deployment model, Amazon is responsible for managing and configuring its own infrastructure needed to run Copia’s software.

Read more at AWS for Industries

🇺🇸 Why Build a New Factory in the US? Logistics, Not Politics

📅 Date:

✍️ Author: Brook Sutherland

🔖 Topics: IT OT Convergence, Digital Twin

🏢 Organizations: Siemens


Siemens is almost as excited about the guts of the Fort Worth facility as it is about the demand that supports the additional capacity. The company has digitally simulated the entire process of setting up a new plant, including the construction design, the layout of the factory floor and the product development but also the day-to-day manufacturing workflows. “We optimize it, we shift it around and when we like it — not before that — we start bringing in excavating machines on the site or putting machines into it,” Busch said. This lets Siemens get the construction right the first time — which is important at a time of high inflation — but it also sets up a virtuous cycle of productivity improvements whereby plant managers can test out tweaks digitally and carry them out with much less equipment downtime, and sensor-packed equipment can yield insights from the field that spark yet more tweaks.

Digital simulation can be game changer — for Siemens itself and for its customers. For example, when a beverage manufacturer rolls out a new product, the viscosity of the liquid will affect the speed at which it can run its filling machines. Traditionally, this was just a trial and error process that resulted in a lot of spilled beverages. “What we can do is we can simulate it — the viscosity and whatnot, the whole plant. And then you just have a new mixture and you run it seamlessly without fooling around,” Busch said. It’s almost like a video game but for a factory — and much more sophisticated.

Read more at Bloomberg

Exploring Manufacturing Databases with James Sewell

Adopting open-source Industrial IoT software

📅 Date:

✍️ Author: Edoardo Barbieri

🔖 Topics: IIoT, IT OT Convergence, Open Source

🏢 Organizations: Ubuntu


Siloed solutions and ad-hoc efforts to tap into the fourth industrial revolution by funding one-time AI/ML and digitalisation projects in manufacturing fell short of their promises. Enterprises did not address the fundamental challenges behind the lagging security, updates and maintenance in industrial hardware, but only focused on applying the latest technologies. Legacy install bases and a lack of standardisation prevented industrial transformation from occurring. To fully reap the benefits of Industry 4.0, the industrial factory has to close the gaps between Operational Technology (OT) and IT. The convergence between the two domains calls for a transition from legacy stacks with closed standards and interfaces to modern IT solutions and the embrace of open-source software.

Read more at Ubuntu Blog

Should every machine owner have secure remote service?

📅 Date:

✍️ Author: Dan Lillback

🔖 Topics: IT OT Convergence

🏢 Organizations: ei3


In an ideal scenario, a new machine is seamlessly installed, equipped with a scalable and easy-to-deploy remote access strategy, promptly connecting to a secure, zero-trust remote service system. When inevitable issues arise, the OEM promptly dispatches experienced service providers to assist the customer’s machine needs. In most cases, there would be no need for service personnel to physically visit the location and in fact industrial machinery OEMs who are best-in-class for using remote service experience a reduction of more than 80% of their service technician travel episodes. Remote access enables service issues to be resolved efficiently resulting in minimal downtime, because machines are up and running in hours, not days or weeks.

Read more at Plant Engineering

How Git-Based Source Control Drives IT/OT Convergence

📅 Date:

🔖 Topics: IT OT Convergence, Open Source

🏢 Organizations: Copia Automation


The topic of robust data management is often overlooked in the convergence conversation; however, it is an area of IT expertise that can be easily applied to OT processes, yielding huge benefits. Git-based source control coupled with formalized review practices, a staple in traditional software development, represents an opportunity unmatched in driving OT team productivity and increased code quality.

Using Git repositories and processes as a framework for OT source control can align IT and OT. From setup, participating IT team members gain immediate visibility into crucial OT systems, their file structures, and the processes used to develop control programs. Likewise, OT teams realize the benefits of securing and tracking code changes, unlocking easy review workflows, and quick code recovery during incidents.

Git-based version control is not common in industrial automation environments. The backbone of OT networks are the PLC control systems that drive manufacturing machinery. PLC systems are often written in visual languages (i.e., ladder logic and function block diagrams) using proprietary development tools. The result is a collection of local binary files on an engineer’s desktop or control devices.

Recently Copia Automation has developed new tools to unlock Git’s full power for these file formats. When using Copia, automation professionals can track all changes, visualize the file outside the development environment, and see the highlighted differences between the versions. Add in the power of Git branching and merging, and Copia delivers a source control framework that enables engineers to build code together, collaborate more effectively, and review all program changes quickly and thoroughly.

Read more at Copia Blog

IT vs. OT: The Difference Between Information Technology and Operational Technology

📅 Date:

🔖 Topics: IT OT Convergence

🏢 Organizations: Tulip


For organizations with a heavy reliance on OT assets, including manufacturers, IT/OT convergence offers the potential for cost savings and resource efficiencies. It allows insights provided through sales and inventory data to be fed into the operational side of the business, enabling manufacturing equipment and power use to be optimized.

When IT and OT are seamlessly integrated, factory operators have more direct control over their manufacturing processes and the ability to monitor their operations. They can easily analyze data from complex systems in real-time, unleashing a new level of improved decision-making and operational efficiency.

Read more at Tulip Blog