Food
Industries in the Food Manufacturing subsector transform livestock and agricultural products into products for intermediate or final consumption. The industry groups are distinguished by the raw materials (generally of animal or vegetable origin) processed into food products.The food products manufactured in these establishments are typically sold to wholesalers or retailers for distribution to consumers, but establishments primarily engaged in retailing bakery and candy products made on the premises not for immediate consumption are included.
Assembly Line
How King Arthur Baking Produces 100 Million Pounds of Flour per Year
A hi-tech factory supports circular mushroom production
To grow mushrooms you need a ‘substrate’ – the base material colonised by the fungi’s mycelium from which the edible mushroom flowers. But sourcing substrates is a thorn in the side of commercial exotic mushroom growers, with supply chain issues dogging the market. This is where Belgian startup Eclo comes in. Normally, mushroom substrates are made from a wood base, grains, water, and mycelium. Eclo, by contrast, has found a way to replace the grains with organic waste from breweries and industrial bakeries. Not only is this a good use of recyled material that reduces the demand for virgin grain – the novel substrate is also high-yield, benefitting growers’ bottom lines.
Cultured Meat Is So Close You Can Almost Taste It
The technology of cultured animal meats has come in a very short time. Prices have declined to the point that these products are competitive – although not on parity – with animal products. Pioneer Mosa Meat reportedly spent $280,000 to create the first cultured beef burger in 2013. Israel’s Future Meat Technologies claims to have reduced the production cost of a 4-oz. cultured (but partially plant-based) chicken breast to $7.50, and beef for less than $16 per pound.
Several companies are gearing up to make production quantities of their products. BlueNalu is completing a 40,000-sq.-ft. pilot facility in San Diego “that enables limited volumes under GMP conditions and global best practices in food safety,” a spokesperson told us. Israel’s Future Meat Technologies raised $347 million in investment back in December, the largest single fundraising to date for a company in the cultivated meat space, in part to build a U.S. plant. While Pioneer Memphis Meats, which has rebranded itself as Upside Foods, last November opened its Engineering, Production and Innovation Center (EPIC), claiming the 53,000 sq. ft. facility in Emeryville, Calif., is the most advanced cultivated meat production facility in the world.
High-tech potato-grading line ups profits for Cornish grower
Another problem caused by the older line relates to packers now wanting more specific size grading, particularly for the Gemson and Jazzy salad varieties the farm grows. They also prefer the crop to be delivered stone free, which is a challenge because of the region’s light loam soils having a relatively high small stone content. With their maincrop varieties, such as Electra, this can be addressed in the field, but it is much more difficult to remove on the harvester when using the narrow 28mm webs that are required for the salad crops.
Quality assurance of sausage salad with 3 different inspection solutions
Tyson invests in AI-enabled robotics firm to boost worker productivity
Automating meat factories has long been a difficult feat because it is costly and carcasses come in varying sizes so it can be hard for robots to cut and work with all types accurately. But as the coronavirus ravaged meat plants, forcing many to temporarily shutter as thousands of workers got sick, more companies accelerated their plans for automation. Meat and poultry companies also are automating certain tasks that can be repetitious or prone to injury, such as moving or loading boxes.
Soft Robotics’ SoftAI technology uses AI and 3D vision to maneuver the company’s mGrip robotic grippers with human-like hand-eye coordination. The technology allows the automation of bulk picking for fragile and irregularly shaped proteins, produce and bakery items, according to the company. Tyson Foods is an existing user of Soft Robotics’ software.
Machine learning optimizes real-time inspection of instant noodle packaging
During the production process there are various factors that can potentially lead to the seasoning sachets slipping between two noodle blocks and being cut open by the cutting machine or being packed separately in two packets side by side. Such defective products would result in consumer complaints and damage to the company’s reputation, for which reason delivery of such products to dealers should be reduced as far as possible. Since the machine type upgraded by Tianjin FengYu already produced with a very low error rate before, another aspect of quality control is critical: It must be ensured that only the defective and not the defect-free products are reliably sorted out.
Integrated intelligent technologies optimize yield and increase profits for rice millers
The digitally connected technology provides mill operators with the insights they need to correctly adjust solution settings. Over time, the intelligent system is capable of adjusting autonomously. Where millers were once left to take corrective action after an incident occurred, they can now prevent costly reprocessing steps and proactively manage the entire process. With these advances, the miller can optimize operating costs, quality and yield, all of which have a direct impact on the profit of the mill.
Analysing fruit data in the supply chain has never been more important for business efficiency
Fruit and production data can be used in ways that it has never been done before to improve a company’s efficiency and boost profits, according to global packhouse equipment and automation supplier Tomra Food.
He added that there are several different useful data types at play in a packhouse; production and traceability level data, performance level data, quality data and auditing data. This data can be used to optimise the supply chain and can be used to make decisions and directions in terms of the next big thing that needs to be done. But consumer trends will constantly change the requirements of automation.
Hygienic Thermoformer Loading
Why Meatpacking Plants Have Become Covid-19 Hot Spots
In Texas, the fastest growing Covid-19 outbreak isn’t in Dallas or Houston or San Antonio, the state’s most densely packed metro areas. It’s hundreds of miles to the north, in the dusty, windswept flatlands of Moore County, population 20,000. According to data reported Monday by the state health department, 19 out of 1,000 residents in Moore County have so far tested positive for the novel coronavirus that causes Covid-19 — 10 times higher than the infection rates in the state’s largest cities.
So what’s in Moore County that’s making people so sick? One of the nation’s largest beef processing facilities, where huge armies of employees slice, shave, and clean up to 5,000 cattle carcasses a day. Last month, Texas health officials launched an investigation into a cluster of Covid-19 cases linked to the massive meatpacking plant, which is operated by JBS USA, a subsidiary of the largest meat processing company in the world, based in São Paulo, Brazil.
3D printing in metal resulted in fewer bacteria and greater food safety
3D printing in metal was chosen as a solution and Marel quickly began to redesign the support element specifically for 3D printing, so that it took full advantage of the technology’s possibilities. The support element is in direct contact with food, so bacteria can accumulate in all cleaves, joints and openings, and these bacteria can be transferred directly to the meat. That’s why we were really excited about the possibility of 3D printing the support element in one piece, and the weight reduction was also a positive element, as the support element moves MANY times a second, says Matias Taul Hansen, Technical Designer at Marel
3D printing is a much cheaper solution than cutting out the item, and compared to laser cutting, 3D printing is also preferable, as we avoid joints where bacteria can accumulate. By 3D printing in titanium, we also achieve a lower-weight item that is cheaper to produce and that can work faster, says Kristian Rand Henriksen, consultant at the Danish Technological Institute.