Railroad

This industry comprises establishments primarily engaged in one or more of the following: (1) manufacturing and/or rebuilding locomotives, locomotive frames and parts; (2) manufacturing railroad, street, and rapid transit cars and car equipment for operation on rails for freight and passenger service; and (3) manufacturing rail layers, ballast distributors, rail tamping equipment and other railway track maintenance equipment.

Assembly Line

Autonomous battery-powered rail cars could steal shipments from truckers

Date:

Vertical: Railroad

Organizations: Parallel Systems

Parallel Systems has emerged from stealth mode with a prototype vehicle that promises to bring advances in autonomy and battery technology to the relatively staid world of freight railroads. In the process, they hope to not just electrify existing routes but also bring freight rail service to places that don’t have it today.

Whether their bet pays off will hinge on whether freight railroads and their customers will buy into a new way of operating. Parallel Systems isn’t just taking an existing freight train and swapping its diesel-electric locomotive for a battery version. Instead, it’s taking the traction motors and distributing them to every car on the train. It’s how many electric passenger trains operate, but it’s a system that has been slow to migrate to the freight world.

Read more at Ars Technica

This is why railway communications needs great network design

Date:

Author: Juan Manuel Melero

Topics: 5G, IIoT

Vertical: Railroad

Organizations: Ericsson

A solid network design is the foundation to deliver on stringent performance requirements associated with mission-critical railway communications and to deliver on consumer expectations, which remain unchanged regardless of being at home or sitting on a train moving at 500km/h.

Network design has the potential to identify the optimal site locations to deliver the target performance at the best TCO, but its complexity cannot be overlooked. While cell planning tools exist, operating them for the right outcome is not trivial and requires highly skilled experts connected to a global knowledge base to keep up to date with the latest industry developments and realize the potential of 5G-based FRMCS.

Read more at Ericsson Blog

How did one of the world's largest robots end up here?

Date:

Vertical: Mining, Railroad

Organizations: Rio Tinto

The autonomous train, consisting of three locomotives and carrying around 28,000 tonnes of iron ore, travelled over 280 kilometres from our mining operations in Tom Price to the port of Cape Lambert. It was monitored remotely by operators from our Operations Centre in Perth more than 1,500 kilometres away. Our AutoHaul™ team at the Operations Centre in Perth continued to hone the technology, running thousands of hours of tests. The AutoHaul™ project was made fully operational in June 2019, making it the world’s first fully autonomous, long distance, heavy-haul rail network.

“The time-saving benefit is enormous because the train network is a core part of the mining operation. If we can prevent those stoppages, we can keep the network ticking over, allowing more ore to be transported to the ports and shipped off more efficiently,” says Lido. “The other major benefit is safety,” he continues. “We are removing the need to transport drivers 1.5 million kilometres each year to and from trains as they change their shift. This high-risk activity is something that driverless trains will largely reduce.”

Read more at Rio Tinto News