Automotive

This industry group comprises establishments primarily engaged in (1) manufacturing complete automobiles, light duty motor vehicles, and heavy duty trucks (i.e., body and chassis or unibody) or (2) manufacturing motor vehicle chassis only.

Recent Posts

A High Production Rate Solves Many Ills

Date:

A walk-through of ‘Production Line : Car Factory Simulation’, Elon Musk’s catch phrases, and how Industry 4.0 technologies are critical to manufacturing success. Recycling drives new business models in apparel and metals.

Cities and States Vie for Emerging Manufacturing

Date:

The emerging manufacturing sectors of semiconductors and electric vehicles are being heavily recruited by cities and states. The build out may permanently change supply lines.

Automotive Industry Clusters Across the World

Date:

Tesla bucks the trend of settling in traditional automotive regions. The supply chain crisis bottlenecks the Port of Los Angeles. Industry 5.0 takes focus in Europe.

Assembly Line

BMWs to Drive Themselves During Production

Date:

Author: Graham Hope

Vertical: Automotive

Organizations: BMW, Seoul Robotics, Embotech

BMW Group project manager Sascha Andree explained: “Automated driving within the plant is fundamentally different from autonomous driving for customers. It doesn’t use sensors in the vehicle. In fact, the car itself is more or less blind and the sensors for maneuvering them are integrated along the route through the plant.”

Initially, the vehicles will only move through the assembly area and then to a parking area, ready for their onward journey by train or truck. But in reality, it is possible to use the tech as soon as the cars are capable of driving independently in the production process.

Read more at IoT World Today

Smart Manufacturing at Audi

Date:

Author: John Sprovieri

Topics: 5G, Defect Detection

Vertical: Automotive

Organizations: Audi

Some 5,300 spot welds are required to join the parts that make up the body of an Audi A6. Until recently, production staff used ultrasound to manually monitor the quality of spot welds based on random sampling. Now, however, engineers are testing a smarter way of determining weld quality. They are using AI software to detect quality anomalies automatically in real time. The robots collect data on current flow and voltage on every weld. An AI algorithm continuously checks that those values fall within predetermined standards. Engineers monitor the weld data on a dashboard. If a fault is detected, they can then perform manual checks.

Read more at Assembly Magazine

Industry 4.0 at Škoda

Date:

Author: John Sprovieri

Topics: Digital Twin

Vertical: Automotive

Organizations: Skoda

Over the past few years, Škoda has invested millions of dollars in state-of-the-art assembly technologies to increase productivity, improve worker safety, and decrease the company’s environmental footprint. As part of an overall Industry 4.0 strategy, the company has implemented additive manufacturing, artificial intelligence, augmented reality, autonomous mobile robots and other technology.

Adding a new workstation to an assembly line requires careful planning—especially if regular operations are expected to continue at the same time. When engineers at Škoda’s assembly plant in Vrchlabí, Czech Republic, wanted to integrate a new robot into a gearbox production line, the project was fully operational in just three weeks—thanks to digital twin technology. Within a cycle time of less than 30 seconds, the new workstation installs bearings into each gearbox. Robots install the bearings to meet the precision requirements of the application.

Optikon uses mathematical combinatorial analysis methods to find various solutions to what is known as the “knapsack problem.” It addresses the question of how certain objects can be optimally fitted into a limited space. While the classic knapsack problem only takes into account the weight and value of the items to be packed, Optikon also considers floor space, the volume of the item, and when the goods have to be shipped.

Read more at Assembly Magazine

The Race To Zero Defects In Auto ICs

Date:

Author: Anne Meixner

Vertical: Automotive, Semiconductor

While semiconductor test engineers are making great strides on isolating fab-generated defects, assembly engineers are quietly focusing attention on improving inspection and processing of equipment data to catch latent defects. This is a big deal for automotive electronics. According to a BMW presentation at the 2017 Automotive Electronics Council reliability workshop, most semiconductor devices fail within the car’s warranty period.

The carmaker noted that 22% of warranty costs are due to electronics and electrical control units. Of those failed parts, BMW said 77% of the failures are semiconductor devices, and 23% of the parts are isolated to active and passive components. Of those semiconductor failures, 48% were due to systematic fails, 24% to test coverage, 15% to random failures, and 6% were retested and did not fail the second time. The failure pareto was also broken down to 41% final test, 24% front-end processing, 22% design, and 12% assembly.

For assembly facilities to deliver 10 dppb quality to their automotive customers, they need to learn from customer returns. This requires investment in assembly equipment data collection and traceability. Latent defects that become activated during the warranty period yet pass electrical test necessitates 100% inspection to screen for these failures. Yet all this investment in more inspection and data collection places a financial strain on traditionally inexpensive assembly operations. There is constructive tension between assembly facilities and their automotive customers, as they are both cost-sensitive. Still, somehow this pathway to 10 dppb will be funded.

Read more at Semiconductor Engineering

Engine block assembly line for Scania's trucks of tomorrow

BMW Creates Fully Automated Production Lines for 3D Printed Car Parts

Date:

Topics: Additive Manufacturing, Laser Powder Bed Fusion

Vertical: Automotive

Organizations: BMW

By utilizing systems made up of laser powder bed fusion (LPBF) platforms, combined with AI and robotics, that it has developed, the IDAM consortium can print 50,000 series parts a year, as well as 10,000 new and individual parts. Opened in 2020, BMW’s campus at Oberschleißheim has 50 3D printers for both metal and plastics. Aside from investing in a variety of 3D printing startups, including Desktop Metal and Xometry, the company also employs HP MultiJet Fusion (MJF) and EOS machines, among other brands.

Read more at 3D Print

Towards a more circular production in Scania Oskarshamn

Date:

Topics: Circular Economy, Sustainability

Vertical: Automotive

Organizations: Scania

Great achievements towards a more circular production are made at Scania’s cab factory In Oskarshamn, Sweden, since 2019. The production is fossil free since 2020, more material is recycled, and the energy consumption has decreased with several thousand MWh.

Read more at Scania News

Virtual Factory Tour―Automobile Production Plant

Ford rolls out autonomous robot-operated 3D printers in vehicle production

Date:

Author: Paul Hanaphy

Topics: Robotic Arm, 3D Printing, Additive Manufacturing

Vertical: Automotive

Organizations: Ford, KUKA, Carbon

Leveraging an in-house-developed interface, Ford has managed to get the KUKA-built bot to ‘speak the same language’ as its other systems, and operate them without human interaction. So far, the firm’s patent-pending approach has been deployed to 3D print custom parts for the Mustang Shelby GT500 sports car, but it could yet yield efficiency savings across its production workflow.

“This new process has the ability to change the way we use robotics in our manufacturing facilities,” said Jason Ryska, Ford’s Director of Global Manufacturing Technology Development. “Not only does it enable Ford to scale its 3D printer operations, it extends into other aspects of our manufacturing processes – this technology will allow us to simplify equipment and be even more flexible on the assembly line.”

At present, the company is utilizing its setup to make low-volume, custom parts such as a brake line bracket for the Performance Package-equipped version of its Mustang Shelby GT500. Moving forwards though, Ford believes its program could be applied to make other robots in its production line more efficient as well, and it has filed several patents, not just on its interface, but the positioning of its KUKA bot.

Read more at 3D Printing Industry

UVeye - Vehicle Inspection for the 21st Century

Hyundai Motor’s Alabama plant: World’s second most productive

Date:

Author: Il-Gue Kim

Vertical: Automotive

Organizations: Hyundai

At Hyundai’s Alabama plant, it took 24.02 hours to fully assemble a vehicle, more productive than 28.71 hours at General Motors’ Fairfax plant, 29.99 hours at GM’s Lansing Delta assembly plant, and 31.92 hours at Toyota Motor’s Georgetown plant, according to the consulting firm.

Hyundai’s US plant is also more productive than its main Korean manufacturing plant in Ulsan in terms of units produced per hour. Hyundai Motor Manufacturing Alabama LLC (HMMA) produces 68 cars an hour, compared with 45 cars at Hyundai’s Ulsan plant, according to the auto industry.

Read more at The Korea Economic Daily

Why Tesla Soared as Other Automakers Struggled to Make Cars

Date:

Author: Jack Ewing

Vertical: Automotive

Organizations: Tesla

GM and Ford closed one factory after another — sometimes for months on end — because of a shortage of computer chips, leaving dealer lots bare and sending car prices zooming. Yet Tesla racked up record sales quarter after quarter and ended the year having sold nearly twice as many vehicles as it did in 2020 unhindered by an industrywide crisis.

“Tesla, born in Silicon Valley, never outsourced their software — they write their own code,” said Morris Cohen, a professor emeritus at the Wharton School of the University of Pennsylvania who specializes in manufacturing and logistics. “They rewrote the software so they could replace chips in short supply with chips not in short supply. The other carmakers were not able to do that.”

Read more at New York Times (Paid)

How Elon Musk’s Software Focus Helped Tesla Navigate Chip Shortage

Date:

Author: Rebecca Elliott

Vertical: Automotive

Organizations: Tesla

Tesla has been able to keep production lines running in part by leaning on in-house software engineering expertise that has made it more adept than many rival auto makers at adjusting to a global shortfall of semiconductors, industry executives and consultants said. Chips are used in everything from controlling an electric motor to charging a phone.

Read more at Wall Street Journal (Paid)

Gigafactories Help Battery Manufacturers Meet Growing EV Demand

Date:

Author: John Miles

Topics: material handling

Vertical: Automotive

Independent cart conveyance systems rely on linear motor technology. Linear synchronous motors (LSM) use electromagnetic force to index carriers more quickly and efficiently than traditional conveyance systems. Linear motors use components that don’t wear or come into contact with one another, which drastically reduces maintenance needs and decreases downtime.

The system’s capabilities range from individual cell sorting to full battery module and pack assembly, while also performing required testing. The machine incorporates linear servo motors that position loads in precisely the correct direction at high speeds. And changeovers simply involve selecting the correct mode from the operator interface.

Free from the constraints of a traditional conveyor, this system can improve your operations by helping you create faster, more flexible battery lines using independent, programmable movers. Time to market is improved by new LSM technology thanks to built-in full-line simulation capabilities that include an integrated track-and-trace system that eliminates the need for external sensing.

Read more at Assembly

The Role Of Blockchain In The Development Of The EV Industry

Date:

Author: Naveen Joshi

Topics: blockchain

Vertical: Automotive

Organizations: Allerin

Blockchain-based applications come with a track-and-trace feature. This feature allows EV manufacturers to keep tabs on the materials as they are brought for production. Certain types of materials, such as wolframite and cobalt, are sourced from hard-to-trace developed countries. Such materials change hands several times before they’re brought to factories for processing and production. Therefore, blockchain is useful to accurately store the provenance-related details of raw materials so that the manipulation of such materials coming from such sources can be prevented. Using blockchain for EV production also enables manufacturers to monitor any diversions while materials are being brought into factories for EV production. Blockchain-enabled tracking allows EV manufacturers to react to vehicle recalls in a cost-effective way. If there are any material issues that require vehicles to be recalled, the manufacturers can call back only those EVs that were built using parts or materials from the partner who supplied them. This makes your supply chain much leaner and cost-effective. A leaner supply chain results in lower production costs for EV makers.

Read more at Forbes

Stellantis Goes All-In With its Software Strategy

Date:

Author: Egil Juliussen

Topics: digital transformation

Vertical: Automotive

Organizations: Stellantis

A transformative strategy is needed to manage software requirements for 14 distinct brands, perhaps the largest number of diverse brands of any auto OEM—across price range and vehicle segments ranging from consumer to commercial vehicles. This software complexity provides major cost savings and revenue opportunities after the software platform transformation is completed. The risk is significant development cost over the next four to five years.

Stellantis estimates that 80 percent of software platforms can be shared among brands, with 20 percent requiring brand-specific software—mostly related to user interfaces. Stellantis is clearly aiming to own a significant portion of its software value chain for all of its brands. Nearly all auto OEMs are on this path, adding software expertise to their core competencies.

A key software goal is decoupling software from hardware platforms. Hardware-software decoupling has become standard procedure due to its many advantages. The latest advantage is the potential to swap out chips when supply chains are disrupted.

Read more at EE Times

The Big Automotive Semiconductor Problem

BMW uses Nvidia’s Omniverse to build state-of-the-art factories

Date:

Author: Louis Columbus

Topics: digital twin, metaverse

Vertical: Automotive

Organizations: BMW, NVIDIA

BMW has standardized on a new technology unveiled by Nvidia, the Omniverse, to simulate every aspect of its manufacturing operations, in an effort to push the envelope on smart manufacturing. BMW has done this down to work order instructions for factory workers from 31 factories in its production network, reducing production planning time by 30%, the company said.

Product customizations dominate BMW’s product sales and production. They’re currently producing 2.5 million vehicles per year, and 99% of them are custom. BMW says that each production line can be quickly configured to produce any one of ten different cars, each with up to 100 options or more across ten models, giving customers up to 2,100 ways to configure a BMW. In addition, Nvidia Omniverse gives BMW the flexibility to reconfigure its factories quickly to accommodate new big model launches.

BMW succeeds with its product customization strategy because each system essential to production is synchronized on the Nvidia Omniverse platform. As a result, every step in customizing a given model reflects customer requirements and also be shared in real-time with each production team. In addition, BMW says real-time production monitoring data is used for benchmarking digital twin performance. With the digital twins of an entire factory, BMW engineers can quickly identify where and how each specific models’ production sequence can be improved. An example is how BMW uses digital humans and simulation to test new workflows for worker ergonomics and efficiency, training digital humans with data from real associates. They’re also doing the same with the robotics they have in place across plant floors today. Combining real-time production and process monitoring data with simulated results helps BMW’s engineers quickly identify areas for improvement, so quality, cost, and production efficiency goals keep getting achieved.

Read more at VentureBeat

Optimized quality control data keep the automotive supply chain flowing

Date:

Topics: metrology, quality assurance

Vertical: Automotive

Organizations: FARO Technologies, Taylor Metal Products

“What the FARO ScanArm allowed me to do was protect my company by proving to the customer that the issue started with their engineering print. With this particular issue, I provided a full layout to the customer with all of the profile call outs from the engineering drawing that showed where the issues were.”

Without FARO solutions and the more accurate data they provided, Taylor Metal Products might have been held financially responsible for these “no build conditions.” Thanks to the fact that the ScanArm was being used, however, Jason was able to “quickly address and correct these severe issues.”

“CAD is your perfect master; it can’t be refuted,” Jason explained. “The great thing about the FARO scans is that I can use color maps. One of the overseas manufacturers is really big about pulling those color maps because with the nature of our product, you’re taking a piece of metal and you’re bending it in different directions. The natural tendency of steel is to conform back to its original state. So, the stamping world is not like the machining world where you’re dealing with really tight tolerances, cutting and threading a hole, or boring out a hole. In the stamping world, you’re pushing metal. So that’s where the scans really come into play. The color maps show any deviation from CAD throughout the entire part. You can scan a profile with a fixed CMM, but it is a linear format, not 3D — and the CMM has to be programed to do this. With the FARO ScanArm after the CAD is locked in, it’s just one click to produce the color map. And the Japanese automotive manufacturers are big on using this technology.”

Read more at FARO Resource Library

2021 Assembly Plant of the Year: GKN Drives Transformation With New Culture, Processes and Tools

Date:

Author: Austin Weber

Topics: manufacturing analytics

Vertical: Automotive

Organizations: GKN Automotive

All-wheel drive (AWD) technology has taken the automotive world by storm in recent years, because of its ability to effectively transfer power to the ground. Today, many sport utility vehicles use AWD for better acceleration, performance, safety and traction in all kinds of driving conditions. GKN’s state-of-the-art ePowertrain assembly plant in Newton, NC, supplies AWD systems to BMW, Ford, General Motors and Stellantis facilities in North America and internationally. The 505,000-square-foot facility operates multiple assembly lines that mass-produce more than 1.5 million units annually.

“Areas of improvement include a first-time-through tracking dashboard tailored to each individual line and shift that tracks each individual failure mode,” says Tim Nash, director of manufacturing engineering. “We use this tool to monitor improvements and progress on a daily basis.

“Overhaul of process control limits has been one of our biggest achievements,” claims Nash. “By setting tighter limits for assembly operations such as pressing and screwdriving, we are able to detect and reject defective units in station vs. a downstream test operation. This saves both time and scrap related to further assembly of the defective unit.”

“When we started on our turnaround journey, our not-right-first-time rate was about 26 percent,” adds Smith. “Today, it averages around 6 percent. A few years ago, cost of non-quality was roughly $23 million annually vs. less than $3 million today.”

Read more at Assembly

Europe’s new €1.6bn chip plant needs only 10 workers on factory floor

Date:

Vertical: Semiconductor, Automotive

Organizations: Infineon

A 60,000 square meter facility built specializing in power semiconductors seeks ease bottlenecks for major automotive clients. The increase in automation solutions has made localized European production of semiconductors possible. By reducing comparable personnel needed to run the facility from 150 to 10 makes the factory cost competitive with factories in Asia.

Read more at Financial Times (Paid)

Can a Green-Economy Boom Town Be Built to Last?

Date:

Author: Noam Scheiber

Topics: Sustainability

Vertical: Automotive

Organizations: Rivian

The epicenter of that boom is an electric-vehicle maker named Rivian, which brought in Mr. Mosier’s company and others in the Normal, Ill., area to work on the city’s costliest construction project in decades: a massive auto plant.

As it prepares to deliver its first electric pickup trucks and sport utility vehicles this year, Rivian has spent around $1.5 billion renovating and expanding a factory once owned by Mitsubishi. On a typical day the 3.3-million-square-foot plant hosts several hundred construction workers alongside more than 2,500 workers employed by the company, which expects to eventually double its local head count.

Read more at New York Times (Paid)

This Tesla co-founder has a plan to recycle your EV batteries

Circular Car Factories

Date:

Author: Austin Weber

Topics: circular economy, sustainability, recycling

Vertical: Automotive

Organizations: Renault, Volvo, World Economic Forum

The next big shift will be an environmentally friendly movement dubbed the “circular auto factory.” According to some experts, the circular cars initiative will reshape the auto industry during the next two decades, as OEMs and suppliers attempt to achieve net-zero carbon emissions across the entire vehicle life cycle.

The term “circular car” refers to a theoretical vehicle that has efficiently maximized its use of aluminum, carbon-fiber composites, glass, fabric, rubber, steel, thermoplastics and other materials. Ideally, it would produce zero material waste and zero pollution during manufacture, utilization and disposal.

One of the key elements of a circular car factory is a closed-loop recycling program where disassembly lines are housed in the same facility as traditional final assembly lines. All vehicle components and materials are remanufactured, reused and recycled at the end of life.

Read more at Assembly

Applying Artificial Intelligence to Paint Shop Robots

Date:

Author: David Greenfield

Topics: robotics

Vertical: Automotive

Organizations: Durr, BMW

Häcker says that factories in the automotive industry have “enormous amounts of latent data about manufacturing processes, raw materials, and products. The key to leveraging these data assets is connectivity with the right interface at the control level to get at the information provided by robots, ovens, cathodic electrocoating systems or conveyor technology. Operators in existing plants are often constrained because most of their systems do not have connectivity and the right interface for data acquisition.”

Read more at AutomationWorld

Industry 4.0 and the Automotive Industry

Date:

Author: John Sprovieri

Topics: 5G, augmented reality, manufacturing analytics, predictive maintenance

Vertical: Automotive

Organizations: Audi, BMW, SEAT SA, Grupo Sese

“It takes about 30 hours to manufacture a vehicle. During that time, each car generates massive amounts of data,” points out Robert Engelhorn, director of the Munich plant. “With the help of artificial intelligence and smart data analytics, we can use this data to manage and analyze our production intelligently. AI is helping us to streamline our manufacturing even further and ensure premium quality for every customer. It also saves our employees from having to do monotonous, repetitive tasks.”

One part of the plant that is already seeing benefits from AI is the press shop, which turns more than 30,000 sheet metal blanks a day into body parts for vehicles. Each blank is given a laser code at the start of production so the body part can be clearly identified throughout the manufacturing process. This code is picked up by BMW’s iQ Press system, which records material and process parameters, such as the thickness of the metal and oil layer, and the temperature and speed of the presses. These parameters are related to the quality of the parts produced.

Read more at Assembly

Accelerating the Design of Automotive Catalyst Products Using Machine Learning

Date:

Authors: Tom Whitehead, Flora Chen, Christopher Daly, Gareth Conduit

Topics: generative design, machine learning

Vertical: Automotive

Organizations: Intellegens, Johnson Matthey

The design of catalyst products to reduce harmful emissions is currently an intensive process of expert-driven discovery, taking several years to develop a product. Machine learning can accelerate this timescale, leveraging historic experimental data from related products to guide which new formulations and experiments will enable a project to most directly reach its targets. We used machine learning to accurately model 16 key performance targets for catalyst products, enabling detailed understanding of the factors governing catalyst performance and realistic suggestions of future experiments to rapidly develop more effective products. The proposed formulations are currently undergoing experimental validation.

Read more at Ingenta Connect

Why Tesla Needed The Giga Press

BMW-led study highlights need for AI-based AM part identification

Date:

Author: Davide Sher

Topics: additive manufacturing, 3D printing

Vertical: Automotive

Organizations: BMW, AM Flow

With time-to-market in the automotive industry steadily decreasing, demand for prototyping components is higher than before and the vision of large-scale production, delivering just-in-time to assembly lines, is emerging. This is not only a question of increasing output quantity and production speed but also of economic viability. The process chain of current available AM technologies still includes a high amount of labor intensive work and process steps, which lead to a high proportion of personnel costs and decreased product throughput. Also, these operations lead to bottlenecks and downtimes in the overall process chain.

Read more at 3D Printing Media

Nissan Accelerates Assembly Line with 3D Printing Solution

Date:

Topics: 3D printing, additive manufacturing

Vertical: Automotive

Organizations: Nissan, BCN3D

Previously Nissan outsourced all of its prototypes and jigs to mechanical suppliers who used traditional manufacturing methods, such as CNC and drilling. Although the quality of the finished product was good, the lead times were long and inflexible and the costs were high. Even simple tools could cost in the region of 400€ for machining. By printing some of these parts in-house with 3D printers, Nissan has cut the time of designing, refining and producing parts from one week to just one day and slashed costs by 95%.

Eric Pallarés, chief technical officer at BCN3D, adds: “The automotive industry is probably the best example of scaling up a complex product with the demands of meeting highest quality standards. It’s fascinating to see how the assembly process of a car – where many individual parts are put together in an assembly line – relies on FFF printed parts at virtually every stage. Having assembled thousands of cars, Nissan has found that using BCN3D 3D printing technology to make jigs and fixtures for complex assembly operations delivers consistently high quality components at a reduced time and lower cost”.

Read more at Manufacturing and Engineering Magazine

Circular Economy 3D Printing: Opportunities to Improve Sustainability in AM

Date:

Author: Hayley Everett

Topics: additive manufacturing, 3D printing, sustainability

Vertical: Machinery, Automotive

Organizations: Ford, Renault, Reflow, Recreus, HP, Materiom

Within the 3D printing sector alone, there are various initiatives currently underway to develop closed-loop manufacturing processes that reuse and repurpose waste materials. Within the automotive sector, Groupe Renault is creating a facility entirely dedicated to sustainable automotive production through recycling and retrofitting vehicles using 3D printing, while Ford and HP have teamed up to recycle 3D printing waste into end-use automotive parts.

One notable project that is addressing circular economy 3D printing is BARBARA (Biopolymers with Advanced functionalities foR Building and Automotive parts processed through Additive Manufacturing), a Horizon 2020 project that brought together 11 partners from across Europe to produce bio-based materials from food waste suitable for 3D printing prototypes in the automotive and construction sectors.

Read more at 3D Printing Industry

John Deere and Audi Apply Intel’s AI Technology

Date:

Author: David Greenfield

Topics: AI, quality assurance, robot welding, machine vision

Vertical: Agriculture, Automotive

Organizations: John Deere, Audi, Intel

Identifying defects in welds is a common quality control process in manufacturing. To make these inspections more accurate, John Deere is applying computer vision, coupled with Intel’s AI technology, to automatically spot common defects in the automated welding process used in its manufacturing facilities.

At Audi, automated welding applications range from spot welding to riveting. The widespread automation in Audi factories is part of the company’s goal of creating Industrie 4.0-level smart factories. A key aspect of this goal involves Audi’s recognition that creating customized hardware and software to handle individual use cases is not preferrable. Instead, the company focuses on developing scalable and flexible platforms that allow them to more broadly apply advanced digital capabilities such as data analytics, machine learning, and edge computing.

Read more at AutomationWorld

Ford's Ever-Smarter Robots Are Speeding Up the Assembly Line

Date:

Author: Will Knight

Topics: AI, machine learning, robotics

Vertical: Automotive

Organizations: Ford, Symbio Robotics

At a Ford Transmission Plant in Livonia, Michigan, the station where robots help assemble torque converters now includes a system that uses AI to learn from previous attempts how to wiggle the pieces into place most efficiently. Inside a large safety cage, robot arms wheel around grasping circular pieces of metal, each about the diameter of a dinner plate, from a conveyor and slot them together.

The technology allows this part of the assembly line to run 15 percent faster, a significant improvement in automotive manufacturing where thin profit margins depend heavily on manufacturing efficiencies.

Read more at WIRED

How Delphi Technologies Reduced Scrap and Improved Transparency with Smart Work Station

Date:

Topics: digital work instructions

Vertical: Automotive

Organizations: Andonix, BorgWarner

In Delphi’s Torreon Plant, they manufacture sensors with specific elements that detect specific changes or issues in how the engine is working. Due to untracked quality issues and incorrect parameters, they were producing a higher than acceptable volume of scrap, from which it was not possible to recover materials. While these quality issues did not impact customers, they led to increased materials costs. They believed they could reduce the volume of scrap by tracking and addressing key elements of the production process, but did not have a software tool that supported that level of granularity. They selected Smart Work Station to address the problem.

Smart Work Station offers Delphi the flexibility to document key elements of the process on the floor, including the recording of personalized data to correlate with performance and quality metrics. Using checklists and digital work instructions, they have been able to ensure consistent execution of processes and measure the results of those efforts.

Read more at Andonix Blog

How Tesla Builds Batteries So Fast

Missing Chips Snarl Car Production at Factories Worldwide

Date:

Author: Debby Wu

Vertical: Automotive

Organizations: Aptiv, Ford, General Motors, Honda, Infineon, NXP Semiconductors, Renesas Electronics, Toyota, TSMC, Volkswagen

Semiconductor shortages may persist throughout the first half as chipmakers adjust their operations, researcher IHS Market predicted on Dec. 23. Automakers will start to see component supply gradually ease in the next two to three months, China Passenger Car Association, which groups the country’s largest carmakers, said Monday.

Chipmakers favor consumer-electronics customers because their orders are larger than those of automakers – the annual smartphone market alone is more than 1 billion devices, compared with fewer than 100 million cars. Automaking is also a lower-margin business, leaving manufacturers unwilling to bid up chip prices as they avoid risking their profitability.

Read more at Bloomberg (Paid)

How Ford, GM, FCA, and Tesla are bringing back factory workers

Date:

Author: @sokane1

Topics: COVID-19

Vertical: Automotive

Organizations: Stellantis, Ford, General Motors, Tesla

In the last week, factory employees have returned to work across the United States to make cars for the country’s four main auto manufacturers: Ford, General Motors, Fiat Chrysler Automobiles, and Tesla. And each of those companies has published a plan showing how it will try to keep those workers from contracting or spreading COVID-19.

Those plans largely take the same shape. They’re presented in glossy PDF pamphlets, each starting with a letter to employees from the respective company’s highest-ranking executive overseeing workplace safety. Like any corporate document, they occasionally get bogged down with platitudes. But they all largely describe a lot of the same basic precautions, including supplying employees with Personal Protective Equipment (PPE) like masks or enforcing physical distancing of at least six feet.

Read more at The Verge

How GM and Ford switched out pickup trucks for breathing machines

Date:

Author: @sokane1

Topics: COVID-19

Vertical: Automotive

Organizations: Ford, General Motors, Ventec

In the most severe cases of COVID-19, a patient’s lungs become so inflamed and full of fluid that they no longer deliver enough oxygen to the bloodstream to keep that person alive. One way to counteract this is by using a ventilator, which helps the patient’s lungs operate while the rest of the body fights off the virus.

As the spread of the new coronavirus bloomed into a pandemic, it became clear that there may not be enough ventilators in the United States (and around the world) to treat the coming wave of patients with these severe symptoms.

Read more at The Verge

Highly flexible AGV solution in truck cabin production

Toyota VR / 360 Factory Tour